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Abstract

The experimental budgets for the transport equations for heat ¯ux and Reynolds stress are presented for a round

turbulent buoyant plume. The pressure correlation terms are deduced as the closing terms and are found to
constitute a substantial part of these budgets. Even though a buoyant plume is initiated by buoyancy, it is found
that the production of heat ¯ux and Reynolds stress is largely maintained by the mean ¯ow gradients, because the
buoyancy production terms are not as large. The results are used to assess the local equilibrium assumption, which

implies that the production and destruction terms of the transport equations balance each other. The results are also
used to investigate why the mechanical to thermal time scale ratio for a buoyant plume is di�erent than the
commonly used value. Finally, some simpler models for the pressure correlation terms, which appear in the heat

¯ux and the Reynolds stress equations, are assessed against those deduced from the experiment. # 2000 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

The past two decades have seen a tremendous

amount of activity toward the second order closure

modeling of turbulence. Many (e.g. Launder et al. [1],
Lumley [2]) share the view that these models will

become the standard tools for the calculation of engin-

eering turbulent ¯ows. Despite their believed import-
ance and large quantity of work published about these

models, very little experimental information is avail-

able about the budgets of the second moment

equations. Part of the problem stems from our in-

ability to measure the pressure correlations. However,

if everything else appearing in the transport equations

for the second moments is known from the experiment,

pressure correlations can be obtained as the closing

terms. At present this is the closest we can come to in

obtaining these terms from experiment, and despite the

measurement errors these balances provide very useful

information for the turbulence modelers.

This paper reports the balances for the heat ¯ux and

Reynolds stress equations for a round turbulent buoy-

ant plume using the data of Shabbir and George [3]. It

is the ®rst time that these budgets are reported for a

buoyant plume and therefore this paper adds new in-
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formation to the existing literature on these ¯ows. The

pressure correlation terms are obtained as the closing
terms. The balances are used to identify the dominant
terms which are responsible for the evolution of heat

¯ux and Reynolds stress in a buoyant plume. The im-
plications of these balances on some of the ideas used
in turbulence modeling are discussed. The ®rst of these

is the assumption of local equilibrium, which implies
that the transport of the Reynolds stresses and the tur-
bulent heat ¯ux is locally balanced between their pro-

duction and destruction terms. Under such conditions
the di�erential equations can be approximated by the
corresponding algebraic equations thus resulting in
considerable simpli®cation of the closure problem. The

second of these is the the ratio of the mechanical to
thermal time scale. A universal value of this parameter
would imply that a transport equation for thermal dis-

sipation rate is not required for the closure of
equations. Finally, some of the popular models for the
pressure correlations are assessed against the exper-

imentally deduced pro®les, by assuming that the press-
ure di�usion is negligible.

2. Turbulent buoyant plume

A buoyant plume is a ¯ow which is initiated and
maintained by buoyancy forces. An example is a ¯ow
initiated by heating a circular disc. In a laboratory it is

di�cult to generate a fully developed turbulent ¯ow in
this manner and other ways, such as a heated vertical
jet, are used to obtain the same ¯ow ®eld. The sche-

matic of the ¯ow and nomenclature is given in Fig. 1.
The vertical and radial coordinates are z and r, re-
spectively. The buoyancy vector is designated by bi �

�0, 0, ÿ gb� where g is the gravitational acceleration in

z direction, and b is the coe�cient of thermal expan-
sion. The mean vertical velocity is represented by W,
the mean radial velocity by U and the mean tempera-

ture by Y: The temperature di�erence is de®ned as
DY � YÿY1, where Y1 is the ambient temperature.
Turbulence variables are represented by the lower case

letters.
This study will use the experimental data of Shabbir

and George [3] who generated a buoyant plume by

forcing a jet of hot air into an isothermal and quies-
cent ambient. The details of the experiment are given
in the above reference and here we will brie¯y sum-
marize the essential features of their experiment in

Nomenclature

bij anisotropic tensor
F0 buoyancy ¯ux
g gravitational acceleration

p ¯uctuating pressure
q2 trace of the Reynolds stress tensor
r radial coordinate

u, v, w radial, azimuthal and vertical ¯uctuating
velocity components, respectively

U, V, W radial, azimuthal and vertical mean vel-

ocity components, respectively
z vertical coordinate

Greek symbols

b coe�cient of thermal expansion
bi buoyancy vector, = �0, 0,ÿ gb)

dij Kronecker delta
E, Ey dissipation rates of q2=2 and y2=2
Z the spatial similarity variable

y, Y ¯uctuating and mean temperature, re-
spectively

G thermal conductivity

n kinematic viscosity
tr ratio of the mechanical and thermal time

scales

Pi sum of the pressure temperature corre-
lation and the molecular destruction term

r density
Fij sum of the pressure strain and anisotropic

part of the mechanical dissipation rate
tensor.

Fig. 1. Schematic of the buoyant plume and the nomencla-

ture.
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order to give the reader background for the present
paper. The temperature of the air at the source was

about 3008C above the ambient. At a distance of
about 1 m above the source the centerline ¯ow tem-
perature was of the order of 208C above the ambient

and the mean ¯ow centerline velocity at this location
was of the order of 1 m/s. The ¯ow ®eld at a certain
distance away from the source (about 0.76 m, which is

about 12 times the source nozzle diameter) was charac-
terized by buoyancy forces alone and, therefore,
beyond such a location the ¯ow was a laboratory ap-

proximation of a turbulent buoyant plume. It should
be noted that the buoyancy force in this experiment is
characterized by the temperature ®eld.
Batchelor [4] showed that for a turbulent buoyant

plume in a neutral environment the equations of
motion permit similarity solution. For a round plume
the radial pro®les of correlations at di�erent vertical

locations scale to a single pro®le if the temperature is
scaled by Ys � F 2=3

0 zÿ5=3, the velocity is scaled by
Ws � F 1=3

0 zÿ1=3, and spatial coordinate is scaled as r/z.

In the above relations F0 is the rate at which buoyancy
is added at the source and is given by

F0 � 2p
�r0
0

Wg
�r1 ÿ r�

r
r dr

where r is the ¯ow density and r1 is the ambient den-
sity. For a buoyant plume in a neutral environment, as
is the case here, F0 is preserved.

In the experiment of Shabbir and George [3] the in-
stantaneous values of the radial and vertical velocity
components and temperature were measured simul-

taneously at several radial points at various vertical lo-
cations using hot-wires. From these measurements
various correlations up-to third order were computed.
By expressing these correlations in the above similarity

variables and ®tting them with polynomials, their de-
rivatives in the vertical and radial direction could be
computed. It is shown in Ref. [3] that the ¯ow

achieved self-similarity over the distances where the
measurements were taken. The accuracy of the exper-
iment was checked against the integral constraints as

well as by carrying out the balances of the mean
momentum and mean energy di�erential equations.
The experiment conserved the buoyancy ¯ux, F0 within
10%. The thermal dissipation rate, Ey, and the mechan-

ical dissipation rate, E, were obtained by balancing the
transport equations of temperature variance, y2=2 and
the turbulence kinetic energy, q2=2 (see Appendix B).

It should be pointed out that the pressure di�usion
term appearing in the turbulence kinetic energy
equation was estimated from the model of Lumley [3].

This model approximates the pressure di�usion term
as @ �pui�=@x i � ÿ�1=5�@ �q2ui�=@x i, where q2 �
u2 � v2 � w2 which implies that the pressure di�usion

reduces the the turbulent di�usion by 20%. Since di�u-
sion term was not the dominant term in the kinetic

energy balance, the approximation of the pressure dif-
fusion was not critical in establishing the level of
mechanical dissipation rate.

3. Transport-budget equations

3.1. Transport equations

In this section, we will write and re-arrange the
transport equations for the turbulent heat ¯ux and the
Reynolds stress for a buoyant plume for their later use
in balancing the experimental data. The transport

equation for the heat ¯ux uiy in tensor notation can be
written as

Uk

ÿ
uiy
�
,k� ÿ

ÿ
uiuky

�
,kÿuiujY,j ÿ ukyUi, k ÿ biy

2

ÿ 1

r
y�p�,i ÿ �n� G�ui,ky,k �1�

where a comma has been used to represent spatial de-
rivative; n is the kinematic viscosity; and G is the mol-

ecular conductivity. The molecular di�usion term has
been neglected since it can be shown to be small as
compared to the turbulent di�usion. The term on the

left side of Eq. (1) represents advection. The ®rst term
on the right side of Eq. (1) represents turbulent di�u-
sion; the second and third terms represent production

through mean temperature and mean velocity gradi-
ents, respectively. The fourth term represents turbulent
buoyancy force and is a production term in general.

The ®rst term on the second line of Eq. (1) is the
pressure correlation term. The last term represents vis-
cous destruction of the heat ¯ux. This term is thought
to get weaker with increasing Reynolds and Peclet

numbers, eventually approaching a value of zero in the
limit of local (small scale) isotropy. This term was not
measured by Shabbir and George [3] and, therefore, its

magnitude relative to the other terms can not be estab-
lished. However, in turbulence modeling, it is custom-
ary to combine this term with the pressure correlation

term (Lumley [2]). Therefore, from this point of view
not knowing each term separately does not reduce the
usefulness of the budgets given in this paper. The sum
of the pressure correlation and the molecular destruc-

tion terms is represented as Pi in the rest of the paper
(i.e. Pi � ÿ 1

ry�p�,i ÿ �n� G�ui,ky,k�: Measurements
reported in Shabbir and George [3] allow the calcu-

lation of each of the terms in Eq. (1) except Pi: There-
fore, Pi is obtained as the closing term in the balance
of Eq. (1). (Appendix B estimates the errors involved

in deducing Pi:)
The transport equation for the Reynolds stress uiuj

within the Bussinesq approximation is
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Uk

ÿ
uiuj

�
,k
� ÿ�uiujuk�,kÿuiukUj,k ÿ ujukUi,k ÿ biujy

ÿ bjuiy�
1

r

ÿ
uip,j� ujp,i

�ÿ 2Eij �2�

where the viscous di�usion term has been neglected
since in this ¯ow it is small compared to the turbulent
di�usion. The ®rst term on the right side of Eq. (2)

represents turbulent di�usion; the next two terms rep-
resent production of the Reynolds stress through the
mean velocity gradients. The next two terms represent

production of the Reynolds stress by turbulent buoy-
ancy force. Note that these two terms couple the tur-
bulent velocity and temperature ®elds. The pressure

correlation term on the second line is considered re-
sponsible for energy transfer between the di�erent
components of Reynolds stresses. The last term, Eij, is
the viscous dissipation term nui, kuj, k:
Following Lumley [2] we will rewrite the above

equation by adding and subtracting the trace of dissi-
pation term 2Eij, which is �2=3�Edij �dij being the

Kronecker delta), so that

Uk

ÿ
uiuj

�
,k
� ÿ�uiujuk�,kÿÿuiukUj, k � ujukUi, k

�ÿ biujy

ÿ bjuiy�
�
1

r

ÿ
uip,j � ujp,i

�ÿ 2Eij � 2

3
Edij

�

ÿ 2

3
Edij (3)

Note that in rearranging the above equation the aniso-

tropic part of the dissipation rate, ÿ2Eij � �2=3�Edij, has
been combined with the pressure correlation term. For
locally isotropic turbulence the anisotropic part of the

dissipation will be zero. It should be pointed out that
in the experiment of Shabbir and George [3] Eij was
not measured and that was obtained from the balance

of the turbulence kinetic energy equation. The term in
the curly brackets on the right side of Eq. (3) will be
designated by Fij and it is this term which has to be
modeled to close the Reynolds stress equation.

Measurements reported in Shabbir and George [3]
allow the calculation of each of the terms in Eq. (3)
except Fij, and it will be obtained as the closing term

in the balance of Reynolds stress. (Appendix B esti-
mates the errors involved in deducing Fij:)

3.2. Heat ¯ux budgets

The two non-zero turbulent heat ¯uxes for the axi-
symmetric buoyant plume are those in the vertical and
radial direction and are represented as wy and uy, re-
spectively. Using Eq. (1) the transport equation for the
vertical heat ¯ux can be written in the cylindrical coor-
dinates as

U
@wy
@r
�W

@wy
@z

1ÿ @

@z

ÿ
wwy

�
ÿ uw

@

@r
DYÿ w2

@

@z
DY

ÿuy@W
@r
ÿ wy

@W

@z
� gby2 ÿPz �4�

The approximation sign instead of the equality sign

has been used since one of the di�usion term
ÿ 1

r
@
@ r �ruwy� has not been included �uwy correlation

from the experiment [3] is not available). The balance

of this equation in similarity form is shown in Fig.
2(a). (The similarity form of all the equations whose
balances are presented in this paper is given in Appen-
dix A.) The advection term is of the same magnitude

as the buoyancy production term over most of the
¯ow ®eld. Near the ¯ow center the production of verti-
cal heat ¯ux is maintained by the mean temperature

gradients and the turbulent buoyancy force, gby2, since
the production through velocity gradients is relatively
small in this region. However, for r=z > 0:1 �r=z � 0:1
approximately corresponds to the plume half width),
most of the production is maintained by the mean vel-
ocity and mean temperature gradients, and the turbu-
lent buoyancy production is only a small fraction of

these two. The transport term is the smallest in this
balance and, therefore, contributes least to the trans-
port of the vertical heat ¯ux. Since Pz was not

measured, it is obtained as the closing term in this heat
¯ux balance. The shape of this term is very similar to
the shape of the vertical heat ¯ux and its magnitude

remains large across the ¯ow ®eld.
The equation for the radial heat ¯ux is

U
@uy
@ r
�W

@uy
@z

1ÿ 1

r

@

@ r

ÿ
ruuy

�
ÿ u2

@

@ r
DYÿ uw

@

@z
DY

ÿuy@U
@ r
ÿ wy

@U

@z
ÿPr �5�

Again the approximation sign is used because the dif-
fusion term ÿ @

@ z �ruwy� has not been included. (Note

that, based on the thin layer approximation estimate,
this term is smaller than the cross-stream di�usion
term.) The balance of this equation is shown in Fig.

2(b). Unlike the vertical heat ¯ux balance, the velocity
gradient production is extremely small. This is because
the radial mean velocity is much smaller than the verti-
cal mean velocity. There is no turbulent buoyancy pro-

duction in this equation and all the production is
therefore maintained by the mean temperature gradi-
ents. Advection and di�usion are of smaller magnitude

and tend to cancel each other. The term representing
the sum of the pressure correlation and the molecular
destruction, Pr, is obtained as the closing term and

makes up a substantial part of the budget. Its shape is
similar to the radial heat ¯ux. We also note that this
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budget can not be divided into any subregions, where
some phenomenon are more dominant than others,
because the relative magnitude of each of the terms

remains the same across the ¯ow ®eld.

3.3. Reynolds stress budgets

Using Eq. (5) the equation for the Reynolds stress in

vertical direction, w2, can be written in cylindrical
coordinates as

U
@w2

@r
�W

@w2

@z

� ÿ1
r

@

@r

ÿ
ruw2

�
ÿ @

@z

ÿ
ww2

�
ÿ 2uw

@W

@ r
ÿ 2w2

@W

@z

� 2gbwyÿ Fzz ÿ 2

3
E �6�

The balance of this equation is shown in Fig. 3(a). We
notice that the advection is the smallest of all the

terms. The di�usion term represents a gain near the
center of the plume and a loss elsewhere. Its magnitude
near the center is comparable to the other dominant

terms in the balance. We note that the turbulent buoy-
ancy production, 2gbwy, is comparable to the mean
gradient production near the plume center but over the
rest of the ¯ow ®eld the mean gradient production is

much larger than the turbulent buoyancy production.
It is interesting to note that the turbulent buoyancy
production and dissipation rate approximately balance

each other across the ¯ow. The closing term in this
balance is Fzz and represents the sum of the pressure
correlation term and the anisotropic part of the dissi-

pation. This term represents a loss for the u2 budget
and we note that beyond r/z = 0.08 this term and the
gradient production term approximately balance each
other.

The equation for the radial component of the Rey-
nolds stress, u2, is given by

U
@u2

@r
�W

@u2

@z

� ÿ1
r

@

@r

ÿ
ruu2

�
ÿ @

@z

ÿ
wu2

�
ÿ 2u2

@U

@r
ÿ 2uw

@U

@z

ÿ Frr ÿ 2

3
E �7�

and its balance is shown in Fig. 3(b). Obviously the
advection of u2 has the same shape as the advection of
w2 which was shown earlier. The mean gradient pro-
duction is a loss near the plume center and is a gain

after about r=z � 0:04: This is because @U=@r is posi-
tive near the plume center but negative elsewhere.
Unlike the w2 budget, the gradient production term is

not large. The di�usion term is a loss over most of the
¯ow ®eld and becomes a gain toward the outer edge of
the ¯ow ®eld. The sum of the pressure correlation term

and the anisotropic part of the dissipation rate, Frr, is
obtained as the closing term in the budget and rep-
resents a gain for u2: We further note that beyond

r=z � 0:08 it approximately balances the dissipation
rate.
Finally, we look at the budget for the shear stress,

Fig. 2. Experimental budget of the transport equation of (a)

vertical heat ¯ux, (b) radial heat ¯ux. The error bars for the

pressure correlations are based on the error estimates given in

Appendix B.
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uw, which is represented by the following equation

U
@uw

@r
�W

@uw

@z

� ÿ1
r

@

@r
�ruuw� ÿ @

@z
�wuw� ÿ uw

@U

@ r
ÿ w2

@U

@z

ÿ u2
@W

@r
ÿ uw

@W

@z
� gbuyÿ Frz �8�

and is shown in Fig. 3(c). We note that both the

advection and the turbulent buoyancy production are
of very small magnitude. Neglecting these two terms
would not cause any signi®cant change in the shear

stress balance. We note that the di�usion term is not
negligible in this budget. The term Frz is essentially
balanced by the di�erence between the shear pro-
duction and the di�usion processes. The shape of Frz

is similar to that of the shear stress and its peak ap-
proximately corresponds to the peak in the shear pro-
duction.

4. Implications on modeling

4.1. Local equilibrium assumption

The assumption of local equilibrium implies that the
evolution of the turbulence is slow enough to ignore
the e�ects of advection and di�usion (or that these

two phenomenon balance each other). For the turbu-
lence kinetic energy equation it means that the pro-
duction and dissipation rates balance each other

whereas for the heat ¯ux and Reynolds stress
equations it implies that the sum of the production
and pressure correlation terms balances the respective

molecular destruction terms. This idea forms the basis
of the classical algebraic stress models where algebraic
expressions for the heat ¯ux and Reynolds stress are
obtained by neglecting the above mentioned terms

from their di�erential equations (Rodi [5]). We will use
the balances shown in the last section to assess the val-
idity of this assumption.

From the budget of vertical heat ¯ux, Fig. 2(a), it is
obvious that the advection and di�usion terms are
small and ignoring these will have no e�ect on the

heat ¯ux. In the radial heat ¯ux budget, Fig. 2(b), the
advection and di�usion terms approximately balance
each other. One can argue that the neglect of these
two terms will introduce an error which is within the

other approximations used in the algebraic stress

Fig. 3. Experimental budget of the Reynolds stress transport
equation. (a) w2, (b) u2, (c) uw: The error bars for the pressure
correlations are based on the error estimateds given in
Appendix B.
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models. Therefore, it seems that for the heat ¯uxes the
algebraic models can provide a reasonably good ap-

proximation. However, success of these models will
depend on the accuracy of the closure expressions for
the pressure temperature-gradient correlation. We will

look at models for these correlations later in the paper.
On the other hand local equilibrium assumption

does not seem to be a good assumption for Reynolds

stresses. From the balances of radial and shear stress
components (Fig. 3(b) and (c)) it is clear that the sum
of the advection and di�usion terms is not small and

can not be neglected without introducing a large error.
This is specially true near the plume center. So we con-
clude that in a buoyant plume the assumption of local
equilibrium is not a good approximation for the Rey-

nolds stresses. This will also be evident when we look
at the ratio of mechanical to thermal time scale in the
next section.

4.2. Ratio of mechanical to thermal time scales

The time scales q2=E and y2=Ey represent the eddy
turn over times for the mechanical and thermal ®elds,

respectively and their ratio is widely used in turbulence
models. A universal value of the time scale ratio would
imply that a transport equation for the thermal dissi-

pation rate is not needed, although it is now realized
that this ratio can widely vary from one ¯ow to
another and that a better approach would be to use a

transport equation (see e.g. Newman et al. [6]).
The time-scale ratio tr � q2Ey=y

2E is calculated using
the data of Shabbir and George [3] and is found to be

3.3 over most of the ¯ow ®eld. (This value starts to
sharply increase as the outer edge of the plume is
approached. The measurement errors are quite large at
this location and it is not clear whether this rise is due

to the measurement errors alone or also because the
mechanical dissipation rate approaches zero faster
than the thermal dissipation rate.) Note that Appendix

B gives estimates of errors involved in calculating the
two dissipation rates. Using these errors it is found
that the time scale ratio is underestimated by 8%. This

error is smaller than what one might have expected
because the two dissipation rates occur as a ratio in
the de®nition of time scale ratio, and as a result the
errors compensate each other.

This value is substantially di�erent than the com-
monly used value of 2.0 which was recommended by
Beguier et. al. [7] after analyzing experiments on wall

bounded (turbulent ¯at plate boundary layer, and fully
developed pipe ¯ow) and boundary free shear ¯ows
(heated wake, and mixing layer). The dissipation rates

were not available for some of these experiments and
were obtained by invoking the local equilibrium
assumption. The authors further noted that the turbu-

lence was found to be in local equilibrium for near
wall ¯ows and that although this was not true for the

free shear ¯ows, the production and dissipation rates
were still the dominant processes for these ¯ows as
well. In the present experiment the production and dis-

sipation processes are certainly the dominant ones but
advection and transport are large enough so that the
local equilibrium assumption is not satis®ed for the q2

and y2 equations. This is the reason that the value of
time scale ratio for a buoyant plume di�ers from that
obtained by Beguier et al. [7]. This can be further illus-

trated by calculating the time scale ratio by using the
local equilibrium assumption. With this assumption
the mechanical and thermal dissipation rates, which
are needed for computing the time scale ratio, are cal-

culated from the following expressions

E � ÿuiujUi, j ÿ biuiy

Ey � ÿuiyY,i

as opposed to deducing them from the transport

equations for turbulence kinetic energy and turbulence
thermal variance. Interestingly enough the time scale
ratio obtained with these approximation is about 2.0
across most of the ¯ow ®eld.

It is of interest to compare the results of the buoyant
plume with the experiment of Tavoularis and Corrsin
[12], where homogeneous turbulence was subjected to

constant cross-stream mean velocity and temperature
gradients. The time scale ratio for their experiment is
about 3.0 which coincidently is close to what is found

here for the buoyant plume. If local equilibrium
assumption is used to calculate the time scale ratio r
for the experiment of Tavoularis and Corrsin [12], then

surprisingly its value comes to about 2.0. It should be
noted that the buoyancy e�ects are absent in their ex-
periment and that the temperature behaves as a passive
scalar. The similarities between the time scale ratios

for the two experiments could be due to the fact that
the relative magnitudes of the production and dissipa-
tion rates are similar in these experiments. It should be

emphasized that the purpose of this comparison is not
to advocate a new universal value of the time scale
ratio but only to show that the use of local equilibrium

assumption in calculating the time scale ratio can
result in large errors.

4.3. Assessment of models for the pressure correlation
term in the heat ¯ux equation

At second order closure level the pressure corre-

lation terms in the turbulent heat ¯ux and Reynolds
stress equations have to be modeled. In this section,
we will compare two of the simpler models for these
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correlations with those obtained from the experimental
budgets by assuming that the pressure di�usion term is

small and can be ignored.
In turbulence modeling the pressure correlation term

in the heat ¯ux term is rewritten in the following man-

ner

1

r
y�p�,i �

1

r

ÿ
py
�
,iÿ

1

r
p�y�,i

where the ®rst term on the right side is a di�usion like
term and tends to redistribute the heat ¯ux where as

the second term on the right side is a source/sink term
for the heat ¯ux. Based on the above splitting we can
write Pi as

Pi � 1

r

ÿ
py
�
,i ÿ

1

r
p�y�i ÿ �n� G�ui,jy,j

� 1

r

ÿ
py
�
,i�P 0i �9�

where the de®nition of P 0i is obvious. Lumley [2] has

proposed that the di�usion term can be modeled as
�py�,i=r � �1=5��ukuky�,i: Most of the other modelers
ignore the pressure di�usion term with the view that at

least for the boundary free shear ¯ows the magnitude
of this term is small as compared to the other terms in
the equation. For the present ¯ow we can at best make

an estimate of this term using the above model. We
®nd that at most the Pi will be reduced by 13%. So
neglecting the pressure di�usion is a reasonable ap-

proximation for this ¯ow. Therefore, we will assume
that Pi1P 0i for the present ¯ow.
Now we will list the two models for Pi and then

compare them with the experiment. The ®rst one is

taken from Launder [13] and is represented by the fol-
lowing equation.

Pi � ÿC1y
E
k
uiyÿ C2yujyUi, j � C3ybiy

2 �10�

The ®rst term represents the model for the slow part
and was originally proposed by Monin [9]; the second
term represents the model for the rapid part; and the

third term represents the model for the buoyancy part.
The model constants are: C1y � 3:0, C2y � 0:5, and
C3y � 0:5:
The second model to be considered here is due to

Zeman and Lumley [10] and is given by

Pi � ÿ�tr � C1 �kE uiyÿ
4

5
Ul,m

�
dliumyÿ 1

4
dmiuly

�

� 1

3
biy

2 �11�

We note that the form of both the slow and the buoy-
ancy parts in this model is the same as that in model

(10). However, the slow term coe�cient is not assigned
a constant value in this model but instead is a function

of the time scale ratio tr and the anisotropy invariants.
The coe�cient C1 is given by [8]

C1 � 1:

� ÿ 15: �P�
�
1:� �1:ÿ 24: �P�1=2

�
P � bijbij

bij � uiuj

q2
ÿ 1

3
dij �12�

The right side of models (10) and (11) can be directly
calculated from the experimental data reported by
Shabbir and George [3]. This can then be compared to

the pressure correlations presented earlier in this
paper. The results from model (10) for the Pz corre-
lation are compared with the experiment in Fig. 4(a),
where each of the three terms constituting Pz model

are also plotted. We note that the model under-pre-
dicts the experiment, with the model peak at about
50% of the experiment. Fig. 4(b) shows the similar

comparison for Pr component. The buoyancy part of
this component is zero and the total modeled corre-
lation for Pr is the sum of the slow and the rapid

parts. We further note that the rapid part is extremely
small and all of the modeled Pr correlation is thus rep-
resented by the slow part. The peak level of model is

about 25% of the experiment. We note that the the
shapes of both Pz and Pr from the model are similar
to the experiment. Obviously, there are errors involved
in deducing Pi from the experimental data (see Appen-

dix B) and in ignoring the pressure di�usion. However,
the di�erences between model and the experiment in
the above comparisons is so large that it can not be

explained by these errors.
Fig. 5 represents the results from model (11). We

note that Pz from the model agrees very well with the

experiment since the di�erences in the two are certainly
within the experimental error. We note that the
improved performance of this model over model Eq.
(10) is due to larger values of both slow and rapid

terms. Fig. 5(b) shows the results for Pr: For this com-
ponent the buoyancy part of the model is zero and the
Pr correlation is represented by the sum of slow and

rapid parts. We note that, unlike model (10), the sign
of the rapid term is opposite to that of the slow term
and the sum of the two greatly under-predicts the ex-

periment, with the peak value from the model at about
20% of the experiment. This discrepancy is much lar-
ger than the experimental error in Pr which is dis-

cussed in Appendix B. It should be pointed out that in
shear dominated ¯ows, such as boundary free shear
¯ows and boundary layers, it is more important to pre-
dict the cross-stream heat ¯ux correctly than the
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stream-wise heat ¯ux. Apparently, Zeman and Lumley
[10] were aware of this shortcoming of their model as

they, on ad-hoc basis, changed the sign of the rapid
part of their model in order to obtain better agreement
between their computation and the experimental data

on planetary boundary layers (Zeman [11]).
It is also useful to carry out a similar comparison

for the above models with the homogeneous shear ¯ow

experiment of Tavoularis and Corrsin [12] to see if the
comparisons with the buoyant plume represent an

anomaly. For this experiment Px and Py represent the

stream-wise and the cross-stream components of press-

ure correlation, respectively, and the pressure di�usion

term is zero. Furthermore, the pressure correlation

consists of only the slow and rapid parts. The exper-

imental value of the pressure correlation, which was

obtained from the balance of the heat ¯ux equations

[6], is compared with the model Eqs. (10) and (11) in

Table 1. We notice similar trends for this ¯ow as we

did for the plume. Both the models under-predict the

Fig. 5. Comparison of the Zeman and Lumley (1976) model

of the pressure±temperature correlation with its experimen-

tally deduced pro®le. (a) pz component and (b) pr component.

Fig. 4. Comparision of the Launder (1975) model of the

pressure±temperature correlation with its experimentally

deduced pro®le. (a) pz component. (b) pr component.
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experiment. Furthermore, the sign of the rapid part of
the cross-stream pressure correlation, Py, is opposite

to the slow part, Py, for model Eq. (11).
From these comparisons we conclude that the model

for the pressure correlation are defective and need to

be improved. Furthermore, any algebraic stress models
obtained from these second order models will be de-
®cient not because the local equilibrium assumption is

not satis®ed for the heat ¯ux transport equation, but
because of the de®ciencies in the pressure correlation
models.

4.4. Models for pressure correlation terms in the
Reynolds stress equations

The pressure correlation term in the Reynolds stress
equations is also split into a pressure±strain correlation
term and a pressure di�usion liketerm. Then these two

parts are modeled separately. Unlike the heat ¯ux
equation, the situation is more subtle for the Reynolds
stress equation because Lumley [8] has shown that the
splitting of pressure correlation for Reynolds stress

equation is not unique (also see Zeman [11]). We will
neglect the pressure di�usion term in the comparisons
shown below. This implies that we are assuming

Fij1F 0ij, where the two are related by

Fij � F 0ij � Fdiffusion
ij , �13�

Fdiffusion
ij being the pressure di�usion term.
Several models for Fij have been proposed and the

reader is referred to several of the review papers which

exist in literature [2]. In this study, we will only assess
one model which is simpler and is used commonly: the
LRR model of Launder et al. [1]. Like its counterpart

model for the pressure±temperature gradient corre-
lation, it consists of three parts: the slow part; the
rapid part; and the buoyancy part. In Launder et al.

[1] only the model for the slow and rapid parts was
presented. Therefore, the model for the buoyancy part
is taken from Launder [13]. The complete model is
given by the following equation.

Fij � ÿC1E

�
uiuj
k
ÿ 2

3
dij

�

ÿ
ÿ
c 02 � 8

�
11 �Pij ÿ 23Pdij ÿ

ÿ
30c 02 ÿ 2

�
55

k
ÿ
Ui,j �Uj,i

�

ÿ
ÿ
c 02 ÿ 2

�
11

�
Dij ÿ 2

3
Pdij

�

ÿ C3

ÿ
biujt� bjuit

�ÿ 2

3
bkukt �14�

where Pij � ÿuiukUi;j ÿ ujukUj;k, Dij � ÿuiukUk;i ÿ
ujukUk;j and P � Pii: The model constant c 02 of the
LRR model has evolved to slightly di�erent value than
that originally recommended by LRR [1]. Using new

experiments on homogeneous shear ¯ow a more accu-
rate calibration has been carried out by several authors
(see Morris [14] and Taulbee et al. [15]). The values of

constants used in the present study are: C1 � 1:8 and
c 02 � 0:55:)
The results are shown in Fig. 6. For the Fzz com-

ponent we note that there is a large discrepancy

between the experiment and the model near the center-
line. For the rest of the ¯ow region we note that the
model level is slightly more negative than the exper-

iment although the di�erence here lies within the ex-
perimental uncertainty. Similar conclusions can be
drawn for the Frr comparisons shown in Fig. 6(b). The

comparison for the Frz, which is the most important
component, is shown in Fig. 6(c) and we note that
both the shape and the level of the model is in reason-
able agreement with the experimentally deduced pro-

®le, and the di�erences between the two could be due
to the experimental errors and the neglect of pressure
di�usion.

5. Summary and conclusions

The balances for the heat ¯ux and Reynolds stresses
were presented for a round turbulent buoyant plume
using the experimental data of Shabbir and George [3].

These provide useful information about the relative
magnitude of the di�erent terms in the heat ¯ux and
Reynolds stress equations. The pressure correlation

terms were deduced as the closing terms in these
equations. It was found out that these terms represent
a substantial part of these budgets. The turbulent

Table 1

Comparison between the experiment of Tavoularis and Corrsin and models for Pi

x=H � 11:0 Slow part of Py Rapid part of Py Total Py Slow part of Px Rapid part of Px Total Px

Experiment ± ± 1.412 ± ± ÿ1.909
Zeman±Lumley 0.798 ÿ0.472 0.326 ÿ1.809 ÿ0.833 ÿ2.642
Launder 0.541 0.000 0.541 ÿ1.227 ÿ0.520 ÿ1.747
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buoyancy force was substantial for the vertical heat
¯ux and vertical Reynolds stress budgets only, but

even then most of the production was due to the mean
¯ow gradients. Therefore, it is concluded that for a
buoyant plume the heat ¯ux and Reynolds stresses are

largely maintained by the mean ¯ow gradients.
These balances were used to assess the assumption

of local equilibrium which forms the basis for the clas-

sical algebraic stress models. It is found that the local
equilibrium assumption is a reasonable approximation
for the heat ¯ux transport equation. However, it is not

a good assumption for the Reynolds stress transport
equation because the sum of the advection and di�u-
sion terms can not be ignored. It was also investigated
as to why the time scale ratio for a buoyant plume,

which has an average value of 3.3 across the ¯ow, is
di�erent than the commonly used value of 2.0. It was
found that this di�erence is a consequence of the local

equilibrium assumption not being satis®ed for the
buoyant plume.
Finally, some of the simpler models for the pressure

correlation terms, which appear in the transport
equations for the heat ¯ux and Reynolds stress, were
compared with the experimentally deduced pro®les. In

making these comparisons it was assumed that the
pressure di�usion is small and can be ignored. It was
found that the models for the pressure correlations
greatly under-predict the data and the possibility of de-

®ciency in the rapid term model was pointed out.
These models need to be improved before they can be
used for accurate predictions for such ¯ows. On the

other hand the model for the pressure strain term,
which appears in Reynolds stress transport equation,
showed a reasonable agreement with its experimentally

deduced pro®le. Finally, we note that these conclusions
apply only to the buoyant plume ¯ow and can not be
generalized to other ¯ows. After similar comparisons
have been made with several other ¯ows, only then

can a general assessment of these model can be made.

Appendix A

Here we give the similarity form of the heat ¯ux and

Reynolds stress equations for a round buoyant plume
in a neutral environment. These equations are appli-
cable in a fully developed region where the ¯ow is self

similar. The spatial similarity variable is Z � r=z: We
have made use of the relations @

@ r � �1=z� d
dZ and @

@ z �
�ÿZ=z2� d

dZ which are obtained by using the chain rule
of di�erentiation. In the following equations every

quantity enclosed in the square brackets is a function

Fig. 6. Comparison of the model of the pressure±strain corre-

lation with its experimentally deduced pro®le. (a) Fzz com-

ponent, (b) Frr component, and (c) Frz component.
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of Z only and represents asimilarity variable. The fol-
lowing equations are written out in such a way so that

the reader can easily recognize the corresponding terms
in the non-similarity form of the equations.h
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Appendix B

The purpose of this appendix is to estimate the lead-
ing errors in the balances of the second moment
equations and the corresponding uncertainty in the
pressure correlation terms. First, we establish the

dominant source of error in the mean ¯ow equations
since [3] measured all the terms of these equations.
Then we use these to estimate how much error is intro-

duced in the calculation of the dissipation rates, which
are obtained in [3] by balancing the turbulence tem-
perature variance and turbulence kinetic energy

equations. After this we estimate the errors present in
the second moment balances.
The transport equations for mean energy and mean-

momentum equations are

U
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Their balances are given in Ref. [3]. Since all the terms
in these equations are measured, it is possible to calcu-

late the error in these balances. This is also done in [3].
Since the mean quantities can be measured relatively
accurately, it is safe to assume that this error is pri-

marily due to the error in second moment terms.
Therefore, we conclude that the dominant source of
error formean energy equation is ÿ 1

r
@
@ r �rgbuy� and for

mean momentum equation it is ÿ 1
r
@
r �ruw�: Now we go

to the temperature variance equation to ®nd out the
uncertainty involved in obtaining its dissipation rate.
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Its balance is presented in [3]. From this balance it is
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found that theturbulent production ÿuyDY=@r and the
thermal dissipation rate, Ey are the two largest terms.

The thermal dissipation is obtained as the closing term
in the balance. Obviously any errors present in the bal-
ance have beenlumped into the thermal dissipation

term. We assume that most of the error in the balance
is due to ÿuy@DY=@r and occurs through uy: From
the mean energy equation we already know the error

involved in uy and we can estimate the error involved
in obtaining Ey from the balance of above equation.
Same approach is used in calculating the error in the

mechanical dissipation rate, E, which is obtained from
the balance of turbulence kinetic energy
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The approximation sign is used because the pressure

di�usion term is estimated from a model pui � ÿq2ui
due to [2] (see [3] for details). However, the main error
in this balance is due to the production term

ÿuw@W=@ r: The error in uw is estimated from the
error in the mean momentum equation balance.
Finally, we assume that to the ®rst order the errors

introduced in the heat ¯ux balances are due to the
errors in their production terms and those in the Rey-
nolds stress balances are due to the errors in pro-

duction and dissipation terms. These errors vary with
the radial position but the maximum error occurs at
about r=z � 0:08: Therefore, the values of the error
given below are for r=z � 0:08: If we carry out these

steps we ®nd out that the maximum error in the ther-
mal dissipation rate, Ey is 25%. The maximum error in
the mechanical dissipation rate, E, is 16%. This means

that the uncertainty in the time scale ratio tr�q2Ey=y2E
is about 8% (=1.25/1.16).
In the vertical heat ¯ux balance the leading source of

error is due to ÿuw@DY=@rÿ uy@W=@r and as a result
pressure correlation Pz is underestimated by 18%. In
the radial heat ¯ux equation the leading source of error
is due to ÿuw@DY=@zÿ uy@U=@r and as a result press-

ure correlation Pr is underestimated by 5%.
In the w2 equation the primary error is due to
ÿ2uw@W=@ rÿ 2E=3: The ÿ2uw@W=@r is underesti-

mated by 21% whereas ÿ2E=3 is underestimated by
15%. However, these errors o�set each other with the
net result that the pressure correlation Pzz is underesti-

mated by about 28%. Similarly, the Prr is underesti-
mated by 20%. In uw equation there is no ÿ2E=3 term.

The error introduced by ÿuw�@U=@r� @W=@z� is negli-
gible because @U=@ r and @W=@z almost cancel each
other out. (From continuity 1

r
@ rU
@ r � @W

@ z � 0:) In this

case then the primary source of error is due to the dif-
fusion term. However the approach used here does not
allow us to calculate this error. As a rough estimate we

can assume that the percent error in Frz is the same as the
percent error inFzz i.e.Frz is underestimated by 21%.
These errors are marked on Figs. 2 and 3. These

errors imply that the levels of pressure correlations are
higher than what is shown in ®gures. It should be
noted that if error in the second moments and the dis-
sipation rates is accounted for then the levels of press-

ure correlations from models will also be higher than
what is shown in ®gures. However the relative di�er-
ence between the experiment and model will approxi-

mately remain unchanged.
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